在(1+x)n(n∈N*)的二项式展开式中,若只有x5的系数最大,则n等于()

问题描述:

在(1+x)n(n∈N*)的二项式展开式中,若只有x5的系数最大,则n等于()
在(1+x)n(n∈N*)的二项式展开式中,若只有x5的系数最大,则n等于( )
A、8 B、9 C、10 D、11

T(r+1)=C(r,n)x^r
系数最大时C(r,n)最大,而只有r=5时,最大
所以n=10
选C
明教为您解答,
请点击[满意答案];如若您有不满意之处,请指出,我一定改正!
希望还您一个正确答复!
祝您学业进步!r=5时为什么n=10?可不可以详细一点呢?只有r=5时,最大所以这是中间的一项而r=5前面有0,1,2,3,4共5项,所以一共有5+5+1=11项而(a+b)^n共有(n+1)项所以n=10我明白了,谢谢你~