若An和Bn分别表示数列{an}和{bn}前n项的和,对任意正整数n,an=-(2n+3)/2,4Bn-12An=13n
若An和Bn分别表示数列{an}和{bn}前n项的和,对任意正整数n,an=-(2n+3)/2,4Bn-12An=13n
(1)求数列{bn}的通项公式;
(2)设数列{kn}=2^(n+1).an,求{kn}的前n项和Sn
(1) 4bn-12an=13n
通项公式bn=13n/4+3an=13n/4-3(2n+3)/2=(n-18)/4
(2) kn=2^(n+1)*an=-(2n+3)/2*2^(n+1)=-(2n+3)*2^n
Sn=-[5*2+7*2^2+9*2^3+.+(2n+3)*2^n
2Sn=-[5*2^2+7*2^3+9*2^4+...+(2n+3)*2^(n+1)]
Sn-2Sn=-[6+2*2+2*2^2+2*2^3+.+2*2^n-(2n+3)*2^(n+1)]
-Sn=-[6+2*2*(2^n-1)/(2-1)-(2n+3)*2^(n+1)]
Sn=6+2*2^(n+1)-4-(2n+3)*2^(n+1)
=2-(2n+1)*2^(n+1)那个第一问是4Bn-12An=13n,是前n项和的加减,不是通项公式通项公式就是没有其他未知数,只有n如果有其他项,则为递推公式不应该是先把An算出来,再算出Bn,然后导出bn吗。。。?an是已知的an不是An,An是前n项和。。。哦,那重算an=-(2n+3)/2=-n-3/2An=-n(n+1)/2-3n/2=-n²/2-2n(1) 4Bn-12An=13nBn=13n/4+3An=13n/4-3n²/2-6n=-n(6n+11)/4B(n-1)=-(n-1)(6n+5)/4通项公式bn=Bn-B(n-1)=-3n-5/4(2) kn=2^(n+1)*an=-(2n+3)/2*2^(n+1)=-(2n+3)*2^nSn=-[5*2+7*2^2+9*2^3+.....+(2n+3)*2^n2Sn=-[5*2^2+7*2^3+9*2^4+...+(2n+3)*2^(n+1)]Sn-2Sn=-[6+2*2+2*2^2+2*2^3+....+2*2^n-(2n+3)*2^(n+1)]-Sn=-[6+2*2*(2^n-1)/(2-1)-(2n+3)*2^(n+1)]Sn=6+2*2^(n+1)-4-(2n+3)*2^(n+1)=2-(2n+1)*2^(n+1)(2)因an已知没错,所以一样。希望能帮到你O(∩_∩)O