设{an}为等比数列,a1=1,a2=3. (1)求最小的自然数n,使an≥2007; (2)求和:T2n=1/a1−2/a2+3/a3−…−2n/a2n.
问题描述:
设{an}为等比数列,a1=1,a2=3.
(1)求最小的自然数n,使an≥2007;
(2)求和:T2n=
−1 a1
+2 a2
−…−3 a3
. 2n a2n
答
(1)由已知条件得an=1•(a2a1)n−1=3n−1,因为36<2007<37,所以,使an≥2007成立的最小自然数n=8.(2)因为T2n=11−23+332−433+…−2n32n−1,①13T2n=13−232+333−434+…+2n−132n−1−2n32n②,①+②得...