如图,在梯形ABCD中,AD∥BC,∠B+∠C=90°,AB=6,CD=8,M,N分别为AD,BC的中点,则MN等于(  ) A.4 B.5 C.6 D.7

问题描述:

如图,在梯形ABCD中,AD∥BC,∠B+∠C=90°,AB=6,CD=8,M,N分别为AD,BC的中点,则MN等于(  )
A. 4
B. 5
C. 6
D. 7

如图:
过点M作ME∥AB,MF∥CD,
∴∠MEN=∠B,∠NFM=∠C,
∵∠B+∠C=90°,
∴∠MEF+∠MFE=90°,
∴∠EMF=90°.
∵AD∥BC,
∴ME=AB=6,MF=CD=8,AM=DM,BN=CN.
∴EF=10,EN=FN.
∴MN=

1
2
EF=5.
故选B.