设△ABC的内角A,B,C所对的边a,b,c成等比数列,则sinA+cosAtanC/sinB+cosBtanC的取值范围是_.

问题描述:

设△ABC的内角A,B,C所对的边a,b,c成等比数列,则

sinA+cosAtanC
sinB+cosBtanC
的取值范围是______.

设三边的公比是q,三边为a,aq,aq2
原式=

sinAcosC+cosAsinC
sinBcosC+cosBsinC
=
sin(A+C)
sin(B+C)
=
sinB
sinA
=
b
a
=q
∵aq+aq2>a,①
a+aq>aq2
a+aq2>aq,③
解三个不等式可得q
5
−1
2

0 <q<
5
+1
2

综上有
5
−1
2
<q<
5
+1
2

故答案为(
5
−1
2
5
+1
2
).