设△ABC的内角A,B,C所对的边a,b,c成等比数列,则sinA+cosAtanC/sinB+cosBtanC的取值范围是_.
问题描述:
设△ABC的内角A,B,C所对的边a,b,c成等比数列,则
的取值范围是______. sinA+cosAtanC sinB+cosBtanC
答
设三边的公比是q,三边为a,aq,aq2,
原式=
=sinAcosC+cosAsinC sinBcosC+cosBsinC
=sin(A+C) sin(B+C)
=sinB sinA
=qb a
∵aq+aq2>a,①
a+aq>aq2②
a+aq2>aq,③
解三个不等式可得q >
−1
5
2
0 <q<
,
+1
5
2
综上有
<q<
−1
5
2
,
+1
5
2
故答案为(
,
−1
5
2
).
+1
5
2