设数列{an}的前n项积为Tn,Tn=1-an,设cn=1/Tn(1)证明数列{Cn}是等差数列
设数列{an}的前n项积为Tn,Tn=1-an,设cn=1/Tn(1)证明数列{Cn}是等差数列
(2)求数列{an}的通项公式(3)是否存在正整数m,n(1<m<n),使得a1,am,an成等比数列?若存在,求出所有的m,n的值,若不存在,说理由.只做第三问就可以了,我推出式子解不出m,n
T1=a1=1-a1 2a1=1 a1=1/2a1a2...an=Tn=1-an (1)a1a2...a(n-1)=Tn-1=1-a(n-1) (2)(1)/(2)an=(1-an)/[1-a(n-1)]整理,得[2-a(n-1)]an=1an=1/[2-a(n-1)]a2=1/(2-1/2)=2/3假设当n=k(k∈N+,且k≥2)时,ak=k/(k+1),则当n=k+1...我算了一个2和8,你看看,是不是也行?T1=a1=1-a1 2a1=1a1=1/2a1a2...an=Tn=1-an (1)a1a2...a(n-1)=Tn-1=1-a(n-1) (2)(1)/(2)an=(1-an)/[1-a(n-1)]整理,得[2-a(n-1)]an=1an=1/[2-a(n-1)]a2=1/(2-1/2)=2/3假设当n=k(k∈N+,且k≥2)时,ak=k/(k+1),则当n=k+1时,a(k+1)=1/(2-ak)=1/[2-k/(k+1)]=1/[(2k+2-k)/(k+1)]=(k+1)/(k+2)=(k+1)/[(k+1)+1],同样满足。数列{an}的通项公式为an=n/(n+1)Tn=a1a2...an=(1/2)(2/3)...[n/(n+1)]=1/(n+1)cn=1/Tn=n+1c1=1/T1=1/a1=2cn-c(n-1)=(n+1)-n=1,为定值。数列{cn}是以2为首项,1为公差的等差数列。a1=1/2am=m/(m+1)an=n/(n+1)假设存在满足题意的m、n。则n>2。[m/(m+1)]²=(1/2)[n/(n+1)]整理,得m²/(m+1)²=n/(2n+2)(n+2)m²-2mn-n=0(m²-2m-1)n+2m²=0n=-2m²/(m²-2m-1)=-2m²/[(m-1)²-2]m=2时,n=-2×4/(1-2)=8m≥3时,(m-1)²-2>0n