等差等比数列的求和
问题描述:
等差等比数列的求和
已知An=1+2+3+4+.+n,求1/A1+1/A2+1/A3+1/A4+.+1/An
n指项数
不分先后
答
1+2+3+……+n=n(n+1)/2
1/(1+2+3+……+n)=2/n(n+1)=(1/n-1/n+1)*2
1/A1+1/A2+1/A3+1/A4+.+1/An
=1/1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+…+1/(1+2+3+…n)
=2/1*2+2/2*3+2/3*4+2/4*5+……+2/n(n+1)
=(1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+……+1/n-1-1/n+1/n-1/n+1)*2
=(1-1/n+1)*2
=n/(n+1)*2
=2n/(n+1)