如何证明可逆矩阵的转置矩阵也可逆.要有详细步骤

问题描述:

如何证明可逆矩阵的转置矩阵也可逆.要有详细步骤
且证明A的转置的逆矩阵等于A的逆矩阵的转置

因为
A可逆
所以
|A|≠0

|A|=|A^T|
所以
|A^T|≠0
所以
A^T可逆.
[A^(-1)]^TA^T
=(AA^(-1))^T
=E^T
=E
所以
A的转置的逆矩阵等于A的逆矩阵的转置