已知(1-cosα+sinα)/(1+cosα+sinα)=-2,那么tanα的值是多少?

问题描述:

已知(1-cosα+sinα)/(1+cosα+sinα)=-2,那么tanα的值是多少?

(1-cosα+sinα)/(1+cosα+sinα)
=[1-(1-2sin^2(a/2))+sina]/[1+2cos^2(a/2)-1+sina]
=[2sin^2(a/2) + 2sin(a/2)cos(a/2)]/[2cos^2(a/2)+2sin(a/2)cos(a/2)]
=sin(a/2)/cos(a/2)
=tana/2
tana/2=-2
tana=tan(a/2+a/2)=(2tana/2)/(1-tana/2平方)
代入解之得tanα=4/3