已知cos(π/3+α)=-3/5,cos(π/3+β)=12/13,且α,β,α-β均为锐角,求cos(β-α)的值.
问题描述:
已知cos(π/3+α)=-3/5,cos(π/3+β)=12/13,且α,β,α-β均为锐角,求cos(β-α)的值.
答
cos(π/3+α)=-3/5,cos(π/3+β)=12/13
而α,β,α-β均为锐角,
由cos²x+sin²x=1
所以
sin(π/3+α)=4/5,sin(π/3+β)=5/13
即
cos(β-α)
=cos【(β+π/3)-(α+π/3)】
=cos(β+π/3)cos(α+π/3)+sin(β+π/3)sin(α+π/3)
=12/13×(-3/5)+5/13×4/5
=-16/65