已知抛物线y ax2+bx+c经过点A(-1,0),B(3,0),C(0,3)三点,直线L是抛物线的对称轴.
问题描述:
已知抛物线y ax2+bx+c经过点A(-1,0),B(3,0),C(0,3)三点,直线L是抛物线的对称轴.
1:求抛物线的函数关系式; 2:设P点是直线L上一点,当三角形设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标; (3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.
答
答:(1)把A(-1,0),B(3,0),C(0,3)代入抛物线方程得:a-b+c=09a+3b+c=00+0+c=3解得方程组为:a=-1,b=2,c=3所以抛物线方程为:y=-x^2+2x+3(2)y=-x^2+2x+3=-(x-1)^2+4,抛物线方程的对称轴x=1,设点P为(1,p)因为...