设{an}与{bn}中一个是收敛数列,另一个是发散数列.证明{an±bn}是发散数列.
问题描述:
设{an}与{bn}中一个是收敛数列,另一个是发散数列.证明{an±bn}是发散数列.
又问{anbn}和{an/bn}(bn≠0}是否必为发散数列.
答
如果{an+bn}收敛
因{an}也收敛
对任何e
都有N1,N2
使k>N1就有 |(ak+bk) - L |
故{an+bn}发散.
把bn化入-bn可知{an-bn}发散.
{anbn}得看{an}的极限A:如果A=0则收歛,否则发散.
{an/bn}:如果{an}->A=0或{bn}->无限大则收歛,否则发散.