设{an}与{bn}中一个是收敛数列,另一个是发散数列.证明{an±bn}是发散数列.又问{anbn}和{an/bn}(bn≠0}是否必为发散数列.
问题描述:
设{an}与{bn}中一个是收敛数列,另一个是发散数列.证明{an±bn}是发散数列.
又问{anbn}和{an/bn}(bn≠0}是否必为发散数列.
答
∑{an±bn}=∑{an}±∑{bn}=±∞, 所以{an±bn}是发散数列。
{anbn}和{an/bn}(bn≠0}未必为发散数列,设bn=1,有anbn=an,an/bn=an,都时收敛的,而{bn}是发散数列的!
答
cauchy收敛原理可证第一个
第二个未必
例如:
an=0 则anbn=0收敛
bn=n,an=常数,an/bn收敛到0
答
如果{an+bn}收敛
因{an}也收敛
对任何e
都有N1,N2
使k>N1就有 |(ak+bk) - L |
故{an+bn}发散.
把bn化入-bn可知{an-bn}发散.
{anbn}得看{an}的极限A:如果A=0则收歛,否则发散.
{an/bn}:如果{an}->A=0或{bn}->无限大则收歛,否则发散.