直三棱柱ABC-A1B1C1中,AB垂直于AC,DE分别为AA1,BC1的中点,DE垂直于平面BCC1,证明AB=AC
问题描述:
直三棱柱ABC-A1B1C1中,AB垂直于AC,DE分别为AA1,BC1的中点,DE垂直于平面BCC1,证明AB=AC
答
DE垂直平面BCC1说明 且为直三棱柱 所以BC中点假设为F 那么 AF垂直BC然后 根据相似 三角形 AB=AC