已知抛物线C,Y^2=4X的焦点为F,过F点的直线L与C相交于A,B,若AB等于16/3,一,求直线方程.二求AB的最小

问题描述:

已知抛物线C,Y^2=4X的焦点为F,过F点的直线L与C相交于A,B,若AB等于16/3,一,求直线方程.二求AB的最小

F(1,0),准线:x=-1,设L:y=k(x-1),带入Y^2=4X得k^2*x^2-2(k^2+2)x+k^2=0,此方程两根x1、x2是两交点横坐标,由抛物线定义知AB=AF+BF=A、B到准线距离的和=x1+x2+2,x1+x2=16/3-2=10/3,应用韦达定理,2(k^2+2)=10/3*...