如图,△ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm,要把它加工成长方形零件PQMN,使长方形PQMN的边QM在BC上,其余两个顶点P,N分别在AB,AC上. (Ⅰ)求这个长方形零件PQMN面积S的最大
问题描述:
如图,△ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm,要把它加工成长方形零件PQMN,使长方形PQMN的边QM在BC上,其余两个顶点P,N分别在AB,AC上.
(Ⅰ)求这个长方形零件PQMN面积S的最大值;
(Ⅱ)在这个长方形零件PQMN面积最大时,能否将余下的材料△APN,△BPQ,△NMC剪下再拼成(不计接缝用料及损耗)与长方形PQMN大小一样的长方形?若能,试给出一种拼法;若不能,试说明理由.
答
(1)设长方形零件PQMN的边PN=a,PQ=x,则AE=80-x.
∵PN∥BC,
∴△APN∽△ABC.
∴
=PN BC
.AE AD
因此,
=a 120
.(1分)80−x 80
解得a=120-
x.(2分)3 2
所以长方形PQMN的面积S=xa=x(120-
x)=-3 2
x2+120x.(3分)3 2
当x=-
=40时,a=60.(4分)120 2×(−
)3 2
S最大值=40×60=2400(mm2).
所以这个长方形零件PQMN面积S的最大值是2400mm2.(5分)
(2)∵S△ABC-2S最大值=
×120×80-2×2400=0,1 2
∴从理论上说,恰能拼成一个与长方形PQMN大小一样的长方形.
拼法:作△ABC的中位线PN,分别过P,N作BC的
垂线,垂足分别为Q,M,过A作BC的平行线,交QP,MN的延长线于G,H,易知△PBQ≌△PAG,△NMC≌△NHA,
所以将△PBQ,△NMC剪下拼接到△PAG,△NHA的位置,
即得四边形PNHG,此四边形即为长方形零件PQMN面积最大时大小一样的长方形.
(注:拼法描述正确得(2分),画图正确得(1分).)