1.an}是等比数列,a4a7=-512,a3+a8=124,且公比q为整数,则a10
问题描述:
1.an}是等比数列,a4a7=-512,a3+a8=124,且公比q为整数,则a10
2.在等比数列{an}中,公比q=2,a1a2a3```a30=20的三十次方,则a3a6a9```a30=?
答
1.
a4a7=a1q^3*a1q^6=a1^2q^9=-512
a3a8=a1q^2*a1q^7=a1^2q^9=-512
a3+a8=124
则由韦达定理
a3和a8是方程x^2-124x-512=0的根
x1=128,x2=-4
a8/a3=q^5
q是整数则q^5是整数
所以必须a8=128,a3=-4
q^5=-32
q=-2
a1^2q^9=-512
所以a1^2=1
a=1或-1
a10=a1q^9=512或-512
2.由a1a2a3…a20=2^30,q=2可知:
a1a2a3¨a30=2^30
a1a2a3¨a30=a1^30q^(1+2+…+29)
=a1^30q^(29×15)
=a1^30q^435
=a1^30×2^435
=a1^30×2^435
=2^30
所以
a1^30=1/2^405
所以a1^10=1/2^135………………(二边开立方)
a3a6a9…a30
=a1^10q^(2+5+…+29)
=a1^10q^(31×5)
=a1^10q^155
=a1^10×2^155
=1/2^135×2^155
=2^20