已知数列{an}满足a1=2,a(n+1)=(3an-2)/(2an-1),求证{1/(an-1)}是等差数列,并求数列{an}的通项公式

问题描述:

已知数列{an}满足a1=2,a(n+1)=(3an-2)/(2an-1),求证{1/(an-1)}是等差数列,并求数列{an}的通项公式

a(n+1)=(3an-2)/(2an-1)=(3an-3/2-1/2)/(2an-1)=3-1/[2(2an-1)]= → a(n+1)=(3an-2)/(2an-1) → a(n+1)-1=(3an-2)/(2an-1)-1=(an-1)/(2an-1)→ 1/[a(n+1)-1]=(2an-1)/(an-1)=1/(an-1)+2∴1/(an-1)是公差为2的等差数...3-1/[2(2an-1)]这一步是什么意思