设二次函数f(x)=ax^2+bx+c,如果f(x1)=f(x2)(其中x1≠x2),则f(x1+x2)=
问题描述:
设二次函数f(x)=ax^2+bx+c,如果f(x1)=f(x2)(其中x1≠x2),则f(x1+x2)=
答
f(x1)=f(x2),则x1,x2关于对称轴对称,x1+x2=-b/a,带入可得f(x1+x2)=
设二次函数f(x)=ax^2+bx+c,如果f(x1)=f(x2)(其中x1≠x2),则f(x1+x2)=
f(x1)=f(x2),则x1,x2关于对称轴对称,x1+x2=-b/a,带入可得f(x1+x2)=