圆的方程及圆系方程的推导与应用
问题描述:
圆的方程及圆系方程的推导与应用
答
圆的方程 一般式x^2+y^2+D1x+E1y+F1=0
标准式 (x-a)^2+(y-b)^2=r^2
设有两个圆C1:x^2+y^2+D1x+E1y+F1=0与 C2 :x^2+y^2+D2x+E2y+F2=0圆系方程就是过已知两个圆的交点的圆的方程x^2+y^2+D1x+E1y+F1+λ(x^2+y^2+D2x+E2y+F2)=0 (λ≠-1)
首先这个方程代表一个圆.其次,C1C2的交点A,B满足这个方程.这是因为A在C1上,所以A的坐标代进C1的式子一定等于0而A也在C2上,所以A的坐标代进C2的式子一定等于0把C1的方程加上λ倍的C2的方程就是上面的圆系方程,所以A在圆系方程代表的圆上.同理,B也在圆系方程代表的圆上.所以圆系方程代表过C1C2交点的圆的方程.要注意的是,这个圆系方程不包括C2.因为不管λ取多少,D1,E1,F1这些C1中的量都不可能去掉,所以表示不了C2.但可以表示C1,只要取λ=0.