已知函数f(x)=ax^2-2xsqrt(4+2b-b^2),g(x)=-sqrt(1-(x-a)^2) sqrt是2次根号

问题描述:

已知函数f(x)=ax^2-2xsqrt(4+2b-b^2),g(x)=-sqrt(1-(x-a)^2) sqrt是2次根号
1、求满足下列条件的所有整数对(a,b):存在x0,使得f(x0)是f(x)的最大值,g(x0)是g(x)的最小值
2、对满足(1)中的条件的整数对(a,b),奇函数h(x)的定义域和值域都是区间【-k,k】,且x∈【-k,0】时,h(x)=f(x),求K的值
题目是这样写的...

1) 恩对,考虑错了,a