如图所示,已知:AB=BC=AC,CD=DE=EC, (1)求证:∠ACD=∠BCE; (2)求证:△ADC≌BEC; (3)求证:AD=BE.

问题描述:

如图所示,已知:AB=BC=AC,CD=DE=EC,

(1)求证:∠ACD=∠BCE;
(2)求证:△ADC≌BEC;
(3)求证:AD=BE.

证明:(1)∵AB=BC=AC,CD=DE=EC,即△ABC和△CDE是等边三角形,
∴∠ACB=∠DCE=60°,
∴∠ACB-∠DCB=∠DCE-∠DCB,
∴∠ACD=∠BCE;
(2)在△ADC和△BEC中,

AC=BC
∠ACD=∠BCE
CD=CE

∴△ADC≌△BEC;
(3)∵△ADC≌△BEC,
∴AD=BE.