如图,已知正三棱柱ABC-A1B1C1中,AB=2AA1,点D为A1C1的中点. 求证: (1)BC1∥平面AB1D; (2)A1C⊥平面AB1D.
问题描述:
如图,已知正三棱柱ABC-A1B1C1中,AB=
AA1,点D为A1C1的中点.
2
求证:
(1)BC1∥平面AB1D;
(2)A1C⊥平面AB1D.
答
(1)连结A1B,设A1B∩AB1=O,连结OD∵△A1BC1中,A1D=DC1,A1O=OB∴OD∥BC1∵OD⊂平面AB1D,BC1⊄平面AB1D,∴BC1∥平面AB1D;(2)在正三棱柱ABC-A1B1C1中,AA1⊥平面A1B1C1,∵B1D⊂平面A1B1C1,∴B1D⊥AA1,∵B1...