已知数列{an}的前n项和为Sn,满足a1=1,an+1=Sn+n+1,n∈N*,(I)求证:数列{an+1}是等比数列;(Ⅱ)求a1+2a2+3a3+…+nan.
问题描述:
已知数列{an}的前n项和为Sn,满足a1=1,an+1=Sn+n+1,n∈N*,
(I)求证:数列{an+1}是等比数列;
(Ⅱ)求a1+2a2+3a3+…+nan.
答
(Ⅰ)已知数列{an}的前n项和为Sn,满足a1=1,an+1=Sn+n+1,n∈N*①,
则:an=Sn-1+n②
则:①-②得:an+1=2an+1
整理得:an+1+1=2(an+1)
所以:
=2(常数),
an+1+1
an+1
由于:a1=1,所以a1+1≠0
则:数列{an+1}是等比数列
(Ⅱ)由(Ⅰ)得到:an+1=(a1+1)2n-1=2n
a1+2a2+3a3+…+nan=(a1+1)+2(a2+1)+…+n(an+1)-(1+2+…+n)
=1•2+2•22+…+n•2n-
n(n+1) 2
设Tn=1•2+2•22+…+n•2n①
则:2Tn=1•22+2•23+…+n•2n+1②
所以:①-②得:
Tn=2n+1-2-n•2n+1=(n-1)•2n+1+2
所以:a1+2a2+3a3+…+nan=(n-1)•2n+1+2-
n(n+1) 2
=(n-1)2n+1-
n2+n-4 2