过点M(2,3)向圆C(X-1)^2+(Y-1)^2=1引切线 则切线方程是?求点M到圆C的切线长?
问题描述:
过点M(2,3)向圆C(X-1)^2+(Y-1)^2=1引切线 则切线方程是?求点M到圆C的切线长?
答
设切点A为(x,y),圆心C(1,1)则AM^2=CM^2-CA^2(x-2)^2+(y-3)^2=(2-1)^2+(3-1)^2-1=4与(X-1)^2+(Y-1)^2=1组合方程,得x=2或2/5,则y=1或9/5即两个切点是(2,1)、(2/5,9/5)即点M到圆C的切线方程是x=2或3x-4y+6=0...