已知各项均为正数的数列{an}的首项a1=1,且log2An+1=log2An +1,数列{bn-an}是等差数列,首项为1,公差...

问题描述:

已知各项均为正数的数列{an}的首项a1=1,且log2An+1=log2An +1,数列{bn-an}是等差数列,首项为1,公差...
已知各项均为正数的数列{an}的首项a1=1,且log2An+1=log2An +1,数列{bn-an}是等差数列,首项为1,公差为2,其中n

log2A(n+1)=log2An+1=log2[2An],则:A(n+1)=2An,则[A(n+1)]/[An]=2=常数,则数列{An}是以A1=1为首项、以q=2为公比的等比数列,得:An=2^(n-1),另外,bn-An=bn-2^(n-1)=2n-1,得:bn=2^(n-1)+2n-1