设函数f(x)在[0,2a]上连续,且f(0)=f(2a),证明至少有一点x属于[0,a],使得f(x)=f(x+a).

问题描述:

设函数f(x)在[0,2a]上连续,且f(0)=f(2a),证明至少有一点x属于[0,a],使得f(x)=f(x+a).

证明:设F(x)=f(x)-f(x+a),则
F(0)=f(0)-f(a)
F(a)=f(a)-f(2a)
两式相加得,F(0)+F(a)=f(0)-f(2a)=0
即F(0)与F(a)异号
由零点定理,至少有一点x属于[0,a],使得F(x)=0
即至少有一点x属于[0,a],使得f(x)=f(x+a)