若a>b>c>0求证明a^(2a)b^(2b)c^(2c)>a^(a+b)b^(c+a)c^(a+b)

问题描述:

若a>b>c>0求证明a^(2a)b^(2b)c^(2c)>a^(a+b)b^(c+a)c^(a+b)
题目订正如下若a>b>c>0求证明a^(2a)b^(2b)c^(2c)>a^(b+c)b^(c+a)c^(a+b)

要证a^(2a) •b^(2b) •c^(2c)>a^(b+c) •b^(c+a) •c^(a+b)=(bc)^a•(ca)^b•(ab)^c由于a、b、c均为正数,所以待证式等价于(a^2/bc)^a•(b^2/ac)^b•(c^2/ab)^c>1分别讨论...