1.一条直线经过P(3,2),与x轴,y轴的正半轴分别交于A,B两点,且△AOB的面积最小(O为坐标原点),求该直线方程.

问题描述:

1.一条直线经过P(3,2),与x轴,y轴的正半轴分别交于A,B两点,且△AOB的面积最小(O为坐标原点),求该直线方程.
2.已知集合A={x||x-a|0},若f(x)=sinπx-cosπx在A上是单调增函数,求a的取值范围.
3.设圆上的点A(2,3)关于x+2y=0的对称点仍在圆上,且圆与直线x-y+a=0相交所得弦长为2√2,求圆的方程.
4.求以圆C1:x^2+y^2-12x-12y-13和圆C2:x^2+y^2+12x+16y-25=0的公共弦AB为直径的圆的方程.
5.已知点A(0,2)和圆C:(x-6)^2+(y-4)^2=36/5.一条光线从点A出发到x轴上后沿圆的切线方向反射,求这条光线从A点到切线所经过的路程.
要求写上过程,决不食言!

(x-6)^2+(y+3)^2=52
或(x-14)^2+(y+7)^2=202