设m>0,在平面直角坐标系中,已知向量a(mx,y+1),向量b(x,y-1).a⊥b,动点M(x,y)的轨迹为E.
问题描述:
设m>0,在平面直角坐标系中,已知向量a(mx,y+1),向量b(x,y-1).a⊥b,动点M(x,y)的轨迹为E.
1求轨迹E的方程并说明该方程所表示曲线的形状2已知M=1/4求该曲线的离心率
答
向量a⊥b
∴mx^2+(y+1)(y-1)=0
mx^2+y^2=1
E的方程:x^2/(1/m)+y^2=1
∵m>0
∴E是椭圆
(2)
m=1/4
椭圆E的方程:x^2/4+y^2=1
a^2=4
a=2
c^2=4-1=3
c=√3
∴离心率e=c/a=√3/2