设a、b、c均为正数,且a+b+c=1,证明:1/a+1/b+1/c≥9.
问题描述:
设a、b、c均为正数,且a+b+c=1,证明:
+1 a
+1 b
≥9. 1 c
答
∵a+b+c=1,
∴原式=
+a+b+c a
+a+b+c b
=3+(a+b+c c
+b a
)+(a b
+c a
)+(a c
+c b
),b c
∵a、b、c均为正数,
∴
+b a
≥2,a b
+c a
≥2,a c
+c b
≥2,b c
代入上式,得
+1 a
+1 b
≥9.1 c