sin(90-x)+sin(180-x)/cos(-x)+sin(-x)=2008,则tan(x+225)的值为多少

问题描述:

sin(90-x)+sin(180-x)/cos(-x)+sin(-x)=2008,则tan(x+225)的值为多少
是sin加sin再除以cos=sin

sin(90-x)=cosx
sin(180-x)=sinx
cos(-x)=cos x
sin(-x)=-sin x
∴化为(cosx+sinx)/(cosx-sinx) 分式上下同除cosx得 (1+tanx)/(1-tanx)=2008 得 tanx=2007/2009
∵ tanx周期为π,∴tan(x+225)=tan(x+45)=(tanx+tan45)/1-tanx.tan45=2008