复数i的正弦值为毛大于1?
问题描述:
复数i的正弦值为毛大于1?
答
根据欧拉公式,e^(ix)=cosx+isinx ,e^(-ix)=cos(-x)+isin(-x) ,
由此解得 sinx=[e^(ix)-e^(-ix)]/(2i) ,
将 x=i 代入可得 sini=[e^(-1)-e]/(2i)=(e-1/e)/2*i ,
它的模为 |e-1/e|/2>1 .