如图,在三角形ABC中,角平分线AD,BE,CF相交于点H,过点H作HG垂直AB,垂足为点G,那么角AHE=角BHG吗?

问题描述:

如图,在三角形ABC中,角平分线AD,BE,CF相交于点H,过点H作HG垂直AB,垂足为点G,那么角AHE=角BHG吗?

证明:∵AD平分∠BAC∴∠CAD=∠BAC/2∵CF平分∠ACB∴∠ACF=∠ACB/2∴∠AHE=∠CAD+∠ACF=(∠BAC+∠ACB)/2=(180-∠ABC)/2=90-∠ABC/2∵BE平分∠ABC∴∠ABE=∠ABC/2∵HG⊥AB∴∠BHG+∠ABE=90∴∠CHG=90-∠...