根据函数极限的定义证明:lim n→2(2X-1)=3

问题描述:

根据函数极限的定义证明:lim n→2(2X-1)=3

由│f(x)-a│=│2x-1-3│=2│x-2│;为了使│f(x)-a│〈ε,则│x-2│〈ε/2;
∴对于任意ε〉0,存在δ=ε/2;当0〈│x-2│〈δ,对应的│f(x)-a│=│2x-1-3|〈ε;从而有:
lim n→2(2X-1)=3