设数列{an}、{bn}、{cn}满足:bn=an-an+2,cn=an+2an+1+3an+2(n=1,2,3,…), 证明:{an}为等差数列的充分必要条件是{cn}为等差数列且bn≤bn+1(n=1,2,3,…)

问题描述:

设数列{an}、{bn}、{cn}满足:bn=an-an+2,cn=an+2an+1+3an+2(n=1,2,3,…),
证明:{an}为等差数列的充分必要条件是{cn}为等差数列且bn≤bn+1(n=1,2,3,…)

证明:(必要性)设是{an}公差为d1的等差数列,则bn+1-bn=(an+1-an+3)-(an-an+2)=(an+1-an)-(an+3-an+2)=d1-d1=0所以bn≤bn+1(n=1,2,3,)成立.又cn+1-cn=(an+1-an)+2(an+2-an+1)+3(an+3-an+2)=d1...