急,一道函数、数列、三角函数题,

问题描述:

急,一道函数、数列、三角函数题,
设函数f(x)=1/4x²+bx-3/4.已知不论ɑ、ß为何实数,恒有f(cosɑ)=0,对于正项数列{an},其前n项和为Sn=f(an)n∈N+
求:
(1)求实数b
(2)求数列{an}的通项公式
(3)若Cn=1/(1+an)² (n∈N+)且数列{Cn}的前n项和为Tn,是比较Tn与1/6的大小,并说明理由

1.
-1≤cosɑ≤1
即当-1≤x≤1时,f(x)<0
1≤2-sinß≤3
即当1≤x≤3时,f(x)≥0,
所以f(1)=0
f(1)=1/4+b-3/4=b-1/2=0
b=1/2;
2.
f(x)=(1/4)x^2+(1/2)x-3/4
Sn=f(an)=(1/4)(an)^2+(1/2)an-3/4
S(n-1)=(1/4)[a(n-1)]^2+(1/2)a(n-1)-3/4
两式相减:
an=Sn-S(n-1)=(1/4)(an)^2+(1/2)an-(1/4)[a(n-1)]^2-(1/2)a(n-1)
(an)^2-2an-[a(n-1)]^2-2a(n-1)=0
[an+a(n-1)][an-a(n-1)-2]=0
an-a(n-1)=2
an=a1+2(n-1)
又S1=f(a1)=(1/4)(a1)^2+(1/2)a1-3/4=a1
(1/4)(a1)^2-(1/2)a1-3/4=0
(a1)^2-2a1-3=0
a1=3
所以an=a1+2(n-1)=3+2(n-1)=2n+1;
3.
Cn=1/(1+an)^2=1/(2n+2)^2=(1/4)[1/(n+1)^2]
4Cn=1/(n+1)^2
又n(n+1)<(n+1)^2<(n+1)(n+2)
1/[(n+1)(n+2)]<1/(n+1)^2<1/[n(n+1)]
1/(n+1)-1/(n+2)<1/(n+1)^2<1/n-1/(n+1)
1/n-1/(n+1)<1/n^2<1/(n-1)-1/n
1/(n-1)-1/n<1/(n-1)^2<1/(n-2)-1/(n-1)
……
1/3-1/4<1/3^2<1/2-1/3
1/2-1/3<1/2^2<1/1-1/2
两边相加:
1/2-1/(n+2)<1/(n+1)^2+1/n^2+1/(n-1)^2+……+1/3^2+1/2^2<1-1/(n+1)
1/2-1/(n+2)<4Tn<1-1/(n+1)
1/8-1/(4n+8)<Tn<1/4-1/(4n+4)