设A是n阶方阵,A*是A的伴随矩阵,∣A∣=2则方阵B=AA*的特征值是( )特征向量是( )

问题描述:

设A是n阶方阵,A*是A的伴随矩阵,∣A∣=2则方阵B=AA*的特征值是( )特征向量是( )

B=AA*=|A|E=
2
..2
.2
.
.
.2
n阶
所以特征值为2(n重)
特征向量为α1=(0,0,0.0,0,1)^T,α2=(0,0,0...0,1,0)^T,α3=(0,0,0.1,0,0)^T.αn=(1,0,0.0,0,0)^T