已知a,b,m均为整数,且(x+a)乘(x+b)=x的2次方+mx+36,则m可能取得的值有哪些?

问题描述:

已知a,b,m均为整数,且(x+a)乘(x+b)=x的2次方+mx+36,则m可能取得的值有哪些?
说明清楚些,明天急用

你想说的是不是这个等式对任意x都成立?
(x+a)(x+b)=x^2+mx+36
x^2+ax+bx+ab-x^2-mx-36=0
(a+b-m)x+ab-36=0
ab-36=0
m=a+b
a b (以下数字都加正负号,只要a,b同号就可以)
1 36
2 18
3 12
4 9
6 6
m:37,20,15,13,12,-37,-20,-15,-13,-12