如图,在四边形ABCD中,∠DAB=∠ABC=90°,CD与以AB为直径的半圆相切于点E,EF⊥AB于点F,EF交BD于点G,设AD=a,BC=b. (1)求CD的长度(用a,b表示); (2)求EG的长度(用a,b表示); (3)试
问题描述:
如图,在四边形ABCD中,∠DAB=∠ABC=90°,CD与以AB为直径的半圆相切于点E,EF⊥AB于点F,EF交BD于点G,设AD=a,BC=b.
(1)求CD的长度(用a,b表示);
(2)求EG的长度(用a,b表示);
(3)试判断EG与FG是否相等,并说明理由.
答
(1)∵AB为半圆的直径,∠DAB=∠ABC=90°,∴DA、BC为半圆O的切线,又∵CD与以AB为直径的半圆相切于点E,∴DE=DA=a,CE=CB=b,∴CD=a+b;(2)∵EF⊥AB,∴EG∥BC,∴EG:BC=DE:DC,即EG:b=a:(a+b),∴EG=aba+...