设数列{an}满足a1=6,a2=4,a3=3,且数列{an+1-an}(n∈N*)是等差数列,求数列{an}的通项公式.
问题描述:
设数列{an}满足a1=6,a2=4,a3=3,且数列{an+1-an}(n∈N*)是等差数列,求数列{an}的通项公式.
答
∵a1=6,a2=4,a3=3,∴a2-a1=-2,a3-a2=-1,且-1-(-2)=1,数列{an+1-an}是-2为首项,1为公差的等差数列,∴an+1-an=-2+(n-1)×1=n-3,∴an=(an-an-1)+(an-1-an-2)+(an-2-an-3)+…+(a2-a1)+a1=(n-4)+...
答案解析:由题意易得数列{an+1-an}是-2为首项,1为公差的等差数列,进而可得其通项公式,由迭代法可得an=(an-an-1)+(an-1-an-2)+(an-2-an-3)+…+(a2-a1)+a1,由等差数列的求和公式可得.
考试点:等差数列的性质.
知识点:本题考查等差数列的性质和通项公式,“迭代法”是解决问题的关键,属中档题.