商场销售一批衬衫,每天可售出20件,每件盈利40元,为了扩大销售减少库存,决定采取适当的降价措施,经调查发现,如果一件衬衫每降价1元,每天可多售出2件. ①设每件降价x元,每天
问题描述:
商场销售一批衬衫,每天可售出20件,每件盈利40元,为了扩大销售减少库存,决定采取适当的降价措施,经调查发现,如果一件衬衫每降价1元,每天可多售出2件.
①设每件降价x元,每天盈利y元,列出y与x之间的函数关系式.
②若商场每天要盈利1200元,每件衬衫降价多少元?
③每件降价多少元时,商场每天的盈利达到最大?盈利最大是多少元?
答
①y=(40-x)(20+2x)
=-2x2+60x+800
所以y与x之间的函数关系式为y=-2x2+60x+800;
②令y=1200,
∴-2x2+60x+800=1200,
整理得x2-30x+200=0,解得x1=10(舍去),x2=20,
所以商场每天要盈利1200元,每件衬衫降价20元;
③y=-2x2+60x+800
=-2(x-15)2+1250,
∵a=-2<0,
∴当x=15时,y有最大值,其最大值为1250,
所以每件降价15元时,商场每天的盈利达到最大,盈利最大是1250元.