P为双曲线x^2/16-y^2/20=1右支上一点,MN分别是圆(x+6)^2+y^2=4和(x-6)^2+y^2=1上点,求PM-PN的最大值

问题描述:

P为双曲线x^2/16-y^2/20=1右支上一点,MN分别是圆(x+6)^2+y^2=4和(x-6)^2+y^2=1上点,求PM-PN的最大值

易知双曲线的焦点为F2(6,0)和F1(-6,0),正好是两个圆的圆心
以F1为圆心的圆的半径为r1=2
以F2为圆心的圆的半径为r2=1
则点PMF1可以构成一个三角形;点PNF2也可以构成一个三角形,这些三角形都符合“两边之和大于第三边”和“两边之差小于第三边”的定理.
在△MF1P中:
|PM|在△PF2N中:
-|PN|由①②相加,得:
|PM|-|PN|由于|PF1|-|PF2|=2a=8,r1+r2=3
则|PM|-|PN|当然,这个结果仅仅是在三角形之内
但是,如果当三个点在同一直线上时,它们就无法构成一个三角形,而是构成了一条线段.这个时候就可以取到等号.
当M与PF1共线且M在PF1的左侧时,①的式子就变成了|PM|=|PF1|+r1
同理,当N与PF2共线,且N在PF2的中间时,②的式子就变成了-|PN|=-|PF2|+r2
这样,③就变成了|PM|-|PN|=11
因此11就是最大值了,这是当且仅当3点共线的时候的.
当然,最小值也可以求出来的,不过此题没要求.不过真的要求,同理也可以很快求得.