P是双曲线x29-y216=1的右支上一点,M、N分别是圆(x+5)2+y2=4和(x-5)2+y2=1上的点,则|PM|-|PN|的最大值为( )A. 6B. 7C. 8D. 9
问题描述:
P是双曲线
-x2 9
=1的右支上一点,M、N分别是圆(x+5)2+y2=4和(x-5)2+y2=1上的点,则|PM|-|PN|的最大值为( )y2 16
A. 6
B. 7
C. 8
D. 9
答
知识点:本题主要考查直线与圆锥曲线的综合应用能力,具体涉及到轨迹方程的求法及直线与双曲线的相关知识,解题时要注意合理地进行等价转化.
双曲线x29-y216=1中,如图:∵a=3,b=4,c=5,∴F1(-5,0),F2(5,0),∵|PF1|-|PF2|=2a=6,∴|MP|≤|PF1|+|MF1|,|PN|≥|PF2|-|NF2|,∴-|PN|≤-|PF2|+|NF2|,所以,|PM|-|PN|≤|PF1|+|MF1|-|PF2|+|NF2|=6+1+2=...
答案解析:由题设通过双曲线的定义推出|PF1|-|PF2|=6,利用|MP|≤|PF1|+|MF1|,|PN|≥|PF2|-|NF2|,推出|PM|-|PN|≤|PF1|+|MF1|-|PF2|-|NF2|,求出最大值.
考试点:双曲线的简单性质.
知识点:本题主要考查直线与圆锥曲线的综合应用能力,具体涉及到轨迹方程的求法及直线与双曲线的相关知识,解题时要注意合理地进行等价转化.