求函数f(x)=sin(π/3+4x)+sin(4x-π/6)的最小正周期和递减区间
问题描述:
求函数f(x)=sin(π/3+4x)+sin(4x-π/6)的最小正周期和递减区间
答
f(x)=sin(π/3+4x)+sin(4x-π/6)
=sin(π/3+4x)+cos(2x+π/3)
=√2sin(4x+7π/12)
=√2cos(4x+π/12)
最小正周期T=2π/4=π/2
2kπ