设集合M={-1,0,1},N={2,3,4,5,6},从M到N的映射f满足条件:对每个x属于M,都有x+f(x)+xf(x)为奇数,那么映射个数为

问题描述:

设集合M={-1,0,1},N={2,3,4,5,6},从M到N的映射f满足条件:对每个x属于M,都有x+f(x)+xf(x)为奇数,那么映射个数为

50个 因为f(x)即为其映射,取N中的数值.x为偶数即x=0时,f(x)=f(0)=3或5时才满足x+f(x)+xf(x)为奇数,即有两种映射可能.x为奇数即x=-1或1时,f(x)取N中任何数都满足x+f(x)+xf(x)为奇数,即每个数有5种映射可能.综述,...