设集合M={-1,0,1),N={2,3,4,5,6},映射f:M 到 N ,则对任意x属于M,x+ f(x) + x f(x) 恒为奇数的映射f的个数为( )M中-1的映射方法有5种,1的映射方法有5种0的映射方法有2种共5*5*2=50个这个答案为什么是乘,50个怎么来的对每个x属于M,都有x+f(x)+xf(x)为奇数,不懂

问题描述:

设集合M={-1,0,1),N={2,3,4,5,6},映射f:M 到 N ,则对任意x属于M,
x+ f(x) + x f(x) 恒为奇数的映射f的个数为( )
M中-1的映射方法有5种,
1的映射方法有5种
0的映射方法有2种
共5*5*2=50个
这个答案为什么是乘,50个怎么来的
对每个x属于M,都有x+f(x)+xf(x)为奇数,不懂