当x为何值,函数y=(x-2)(x-4)(x-6)(x-8)+12有最小值?
问题描述:
当x为何值,函数y=(x-2)(x-4)(x-6)(x-8)+12有最小值?
请写出解题过程.
答
y=(x-2)(x-4)(x-6)(x-8)+12
=[(x-2)(x-8)][(x-4)(x-6)]+12
=(x²-10x+16)(x²-10x+24)+12
=(x²-10x)²+40(x²-10x)+396
=[(x²-10x)²+40(x²-10x)+400]-4
=(x²-10x+20)²-4
当x²-10x+20=0时,
即x=5±√5时,
函数y=(x-2)(x-4)(x-6)(x-8)+12有最小值(其最小值=-4)