求证:5^2*3^2n+1*2^n-3^n*6^n+2能被13整除.
问题描述:
求证:5^2*3^2n+1*2^n-3^n*6^n+2能被13整除.
请说明其中的定义,
答
5^2*3^(2n+1)*2^n-3^n*6^(n+2)=5^2*3^(2n+1)*2^n-3^n*2^(n+2)*3^(n+2)=5^2*3^(2n+1)*2^n-3^(n+n+2)*2^(n+2)=5^2*3^(2n+1)*2^n-3^(2n+1+1)*2^(n+2)=5^2*3^(2n+1)*2^n-3*3^(2n+1)*2^2*2^n=3^(2n+1)*2^n*(5^2-3*2^2)=3^...