若x-1=(y+1)/2=(z-2)/3,求x^2+y^2+z^2的最小值.

问题描述:

若x-1=(y+1)/2=(z-2)/3,求x^2+y^2+z^2的最小值.

x^2+y^2+z^2=(x-1)^2+(y+1)^2+(z-2)^2+2x-1-2y-1+4z-4=14(x-1)^2+10(x-1)+6=14[(x-1)+5/14]^2-25/14+6,可知当x-1=-5/14时最小,即x=9/14,最小值为6-25/14=59/14